Name \qquad
School \qquad
Chapter \qquad

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of 30 problems. You will have 40 minutes to complete all the problems. You are not allowed to use calculators, books or other aids during this round. Calculations may be done on scratch paper. All answers must be complete, legible and simplified to lowest terms. Record only final answers in the blanks in the right-hand column of the competition booklet. If you complete the problems before time is called, use the remaining time to check your answers.

In each written round of the competition, the required unit for the answer is included in the answer blank. The plural form of the unit is always used, even if the answer appears to require the singular form of the unit. The unit provided in the answer blank is the only form of the answer that will be accepted.

Total Correct	Scorer's Initials

National Sponsors

Raytheon Company * National Defense Education Program *
Northrop Grumman Foundation *
National Society of Professional Engineers * CNA Foundation *
ThinkFun * Texas Instruments Incorporated * 3M Foundation

1. Boy Scout Troop 324 is planning to go hiking for 1 day. There are 12 boys in the troop, and they will be accompanied by 3 scout leaders. Each person will need at least 3 bottles of water that day. What is the minimum number of bottles of water needed for the trip?

2. Cammie has some pennies, nickels, dimes and quarters. What is the least number of coins that she can use to make 93 cents?
3. Kara has three non-overlapping circles. The area of the circle 8 inches in diameter is how much greater than the combined areas of the circle 6 inches in diameter and the circle 2 inches in diameter? Express your answer in terms of π.
4. During the first five games of the baseball season, Mike Slugger had 7 hits in 20 turns at bat. In the next game, he had 5 hits in 5 turns at bat. For the first six games, what percent of Mike's turns at bat resulted in hits?

5. The first term of an arithmetic sequence is -37 , and the 2 nd term is -30 . What is the smallest positive term of the sequence?
6. At Paul Bunyan's tree farm they sell Fraser firs and blue spruce trees. They plant saplings of these two kinds of trees that are 8 inches and 5 inches tall, respectively. The Fraser firs grow at a constant rate of 12 inches per year, and the blue spruce trees grow at a constant rate of 14 inches per year. After how many years will these trees be the same height? Express your answer as a common fraction.
7. \qquad bottles
\qquad coins
8. \qquad
9. \qquad \%
10. \qquad
11. \qquad
12. I had $\$ 30$ in allowance money and spent it as indicated in the pie graph shown. How many dollars did I spend on burgers?

How I Spent My Allowance

8. M and N are both perfect squares less than 100 . If $\mathrm{M}-\mathrm{N}=27$, what is the value of $\sqrt{M}+\sqrt{N}$?
9. John made two 120 -mile trips. He made his second trip in one hour less time than his first trip. The total time for the two trips was 9 hours. What was his average rate, in miles per hour, for the second trip?
10. In the figure shown, there are parallelograms of many sizes. How many total parallelograms are there in the diagram?

11. Five centimeters more than three times the length of a rectangle is less than or equal to 44 cm and greater than or equal to 20 cm . The width of the same rectangle is 10 cm . What is the positive difference between the maximum possible area of the rectangle and the minimum possible area of the rectangle?
12. Javier needs to exchange his dollar bill for coins. The cashier has 2 quarters, 10 dimes and 10 nickels. Assuming the cashier gives Javier the correct amount and at least one quarter, how many possible combinations of coins could Javier receive?

7. $\$$
8. \qquad
9. \qquad
10. parallelograms
11. \qquad
12. combinations
\qquad
13. Joan has four test scores. The median is 80 points, and the range is 12 points. What is the maximum possible score she could have received on a test?
14. The five-digit integer RS,TUV is divisible by $5, S=R^{2}$ and $10 \times \mathrm{T}+\mathrm{U}=5$. If $\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}$ and V are not necessarily distinct, how many positive five-digit integers satisfy these conditions?
15. Given the function $y=x^{2}+10 x+21$, what is the least possible value of y ?
16. A square and a circle intersect so that each side of the square contains a chord of the circle equal in length to the radius of the circle. What is the ratio of the area of the square to the area of the circle? Express your answer as a common fraction in terms of π.

17. In a rectangle $A B C D$, point E is on side $C D$. The area of triangle ADE is one-fifth of the area of quadrilateral ABCE . What is the ratio of the length of segment DE to the length of segment DC? Express your answer as a common fraction.
18. For a certain sequence of numbers, the sum of the first n
18. \qquad numbers in the sequence is given by $n^{3}+4 n$ for all positive integers n. What is the tenth number in the sequence?
13. \qquad
14. integers
15. \qquad
16. \qquad
17. \qquad

19. The figure shows a square in the interior of a regular hexagon and sharing a common side. What is the degree measure of $\angle \mathrm{ABC}$?

20. When the diameter of a pizza increases by 2 inches, the area increases by 44%. What was the area, in square inches, of the original pizza? Express your answer in terms of π.
21. If the numerator of a fraction is increased by six, the value of the fraction will increase by one. If the denominator of the original fraction is increased by 36 , the value of the original fraction will decrease by one. What is the original fraction? Express your answer as a common fraction.
22. The 80th term of an arithmetic sequence is twice the 30th term. If the first term of the sequence is 7 , what is the 40th term?
23. A right circular cone is sliced into four pieces by planes parallel to its base, as shown in the figure. All of these pieces have the same height. What is the ratio of the volume of the second-largest piece to the volume of the largest piece? Express your answer as a common fraction.

24. If $x+y+z=7$ and $x^{2}+y^{2}+z^{2}=19$, what is the arithmetic mean of the three products $x y, y z$ and $x z$?
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
31. Quadrilateral ABCD is inscribed in a circle with segment AC a diameter of the circle. If $m \angle \mathrm{DAC}=30^{\circ}$ and $m \angle \mathrm{BAC}=45^{\circ}$, the ratio of the area of $A B C D$ to the area of the circle can be expressed as a common fraction in simplest radical form in terms of π as $\frac{a+\sqrt{b}}{c \pi}$. What is the value of $a+b+c$?
32. The numbers a, b, c and d form a geometric sequence, in that order. If b is three more than a, and c is nine more than b, what is the value of d ? Express your answer as a mixed number.
33. In three flips of an unfair coin the probability of getting three heads is the same as the probability of getting exactly two tails. What is the ratio of the probability of flipping a tail to the probability of flipping a head? Express your answer as a common fraction in simplest radical form.
34. The region shown is bounded by the arcs of circles having radius 4 units, having a central angle measure of 60 degrees and intersecting at points of tangency. The area of the region can be expressed in the form $a \sqrt{b}+c \pi$ square units, where \sqrt{b} is a radical in simplest form. What is the value of $a+b+c$?
35. A bag contains red balls and white balls. If five balls are to be pulled from the bag, with replacement, the probability of getting exactly three red balls is 32 times the probability of getting exactly one red ball. What percent of the balls originally in the bag are red?
36. What is the value of $52,683 \times 52,683-52,660 \times 52,706$?
37. \qquad
38. \qquad
39. \qquad
40. \qquad
41. \qquad \%
42. \qquad
